EE 435

Lecture 40

Switched-Capacitor Amplifiers and Switched-Capacitor Filters

Review from Last Lecture

How important is statistical analysis?

Example: What will be the yield if two of the 7-bit FLASH ADCs with yields of 98.8% are combined to obtain an 8 -bit ADC?

$Y_{A D C}=98.8 \%$

$$
\mathrm{Y}_{\mathrm{ADC}}=1.52 \cdot 10^{-6}
$$

- The onset of statistically-induced yield loss can be abrupt
- Intuition is not an acceptable substitute to statistical analysis
- Without statistical analysis/simulation there is a high probability that a data converter will be substantially over designed or under designed and neither is acceptable

String DAC Statistical Performance

standard deviation of $I L_{k}$ assumes a maximum variance at mid-code

It can be shown that $I L_{k}$ is Gaussian and

$$
\sigma_{I N L k \max }=\sigma_{\frac{R_{R}}{R_{\text {NOM }}}} \frac{\sqrt{N}}{2}
$$

Example 3: What area is needed for obtaining a 99\% yield for an 8-bit string DAC and how does that compare to the area required for a 7 -bit DAC with the same yield?
For 99\% yield

$$
\begin{aligned}
& \sigma_{z}=\sigma_{R} \cdot \frac{\sqrt{N}}{R_{N}}=\frac{A_{\rho}}{\sqrt{A}} \bullet \frac{\sqrt{N}}{2}=0.388 \\
& \frac{A_{\rho}}{\sqrt{A}} \cdot \frac{\sqrt{N}}{2}=0.388 \\
& A_{\rho}=0.1 \mu \mathrm{~m} \quad N=256 \\
& A=4.25 \mu \mathrm{~m}^{2}
\end{aligned}
$$

Area doubled because there are twice as many resistors and each is approximately twice as big so by adding 1 -bit of resolution, the area went up by approximately a factor of 4

How important is statistical analysis?

- Statistical analysis of data converters is critical
- Some architectures are more sensitive than others to statistical variations in components
- The onset of yield loss due to statistical limitations is generally quite abrupt and can have disastrous effects if not considered as part of the design process

$$
\text { Recall examples where } \sigma_{\mathrm{vos}}=5 \mathrm{mV} \text { compared with } \sigma_{\mathrm{vos}}=1 \mathrm{mV}
$$

- Substantially over-designing to avoid concerns about statistical yield loss is not a practical solution since the area penalty, the speed penalty, and the power penalty are generally quite severe

For the effects of local random variations of a parameter X, generally

$$
\sigma_{X} \propto \frac{\mathrm{~A}_{0}}{\sqrt{\mathrm{~A}_{\mathrm{C}}}}
$$

where A_{C} is the area of the matching critical components and A_{0} is a process parameter

Some of the most basic and widely used analog circuits

Inverting Amplifier

Noninverting Amplifier

Low-pass Active Filter

$$
p=-\frac{1}{R C}
$$

Not practical to implement on silicon

- Area for R too big
- Area for C too big
- Accuracy of I_{0} and p too poor

But ratio accuracy can be very good (0.1% or better with good layout and appropriate area)

How bad is the problem?

$R \square=21.7 \Omega / \square$ and $C d=0.864 f F / \mu^{2}$

$$
\frac{V_{\text {OUT }}}{V_{\text {IN }}}=-\frac{R / R_{1}}{1+R C s}
$$

Low-pass Active Filter

$$
p=-\frac{1}{R C}
$$

Assume $|\mathrm{p}|=2 \pi \cdot 1000$ and pole accuracy needed is 0.1%
Process tolerance on R and C is about $\pm 20 \%$

$$
K_{0}=1+\frac{R_{2}}{R_{1}}
$$

$$
\mathrm{R}_{\square}=20 \Omega / \square \text { and } \mathrm{Cd}=1 \mathrm{pF} / \mu^{2} \quad \text { (approximately) }
$$

$$
\text { If } R=1 \mathrm{~K} \Omega \text {, require } 1000 / 20=50 \text { squares }
$$

$$
\frac{1}{\mathrm{RC}}=2000 \pi \quad \mathrm{C}=\frac{1}{\mathrm{R} \cdot 2000 \pi} \quad \mathrm{C}=\frac{1}{1000 \bullet 2000 \pi}=0.159 \mu F
$$

$$
\mathrm{A}_{\mathrm{C}}=\frac{C}{C_{D}}=\frac{0.159 \mu F}{1 f F / \mu^{2}}=1.59 \times 10^{8} \mu^{2}
$$

Pole tolerance $\pm 40 \%$

An amplifier alternative ?

Inverting Amplifier

Inverting Amplifier

- Capacitor version is area effective and can have very good accuracy
- The node between C_{1} and C_{2} is a floating node if the Op Amp has a MOS differential pair at the input
- But if we get any charge on the intermediate node there is no way to get it off

An amplifier alternative ?:

Φ_{1} and Φ_{2} are nonoverlapping clocks
During Φ_{1}
C_{1} is charged to $V_{I N}$ and stores charge $Q_{1}=C_{1} V_{I N}$
C_{F} is discharged and $\mathrm{V}_{\text {OUT }}=0$
During Φ_{2}
C_{1} is discharged but charge is transferred to C_{F}
$Q_{2}=-Q_{1}$ and $V_{\text {OUT }}=Q_{2} / C_{F}$
Substituting for Q_{1} we obtain $V_{\text {OUT }}=-\frac{C_{1}}{C_{F}} V_{\text {IN }}$
Serves as a voltage amplifier with output valid during φ_{2}

An amplifier alternative !

Φ_{1} and Φ_{2} are nonoverlapping clocks

- Many applications only need amplifier output at discrete points in time
- Accuracy can be very good
- Area can be very small

But, what about the switches?

Switches for SC Circuits

- Often a single MOS transistor is adequate (either n-ch or p-ch)
- Sometimes need transmission-gate switch (parallel n-ch and p-ch)
- Switches work very well and can be very small but must manage their R_{ON}

Parasitic Capacitances

3 switches and 2 capacitors
10 parasitic capacitances!
Some of parasitic capacitances may be several percent of the size of C_{1} and C_{F}

And parasitic capacitors do not match very well

Parasitic Capacitances

Ideally $\quad V_{\text {out }}=-\frac{C_{1}}{C_{F}} V_{\text {IN }}$

10 parasitic capacitances!

Parasitic Capacitances ${ }_{\text {c. }}$

$\mathrm{C}_{1} / \mathrm{C}_{\mathrm{F}}$ can be very precisely controlled with appropriate layout and area allocation

If op amp is ideal, $\mathrm{C}_{\mathrm{d} 1}, \mathrm{C}_{\mathrm{B} 1}, \mathrm{C}_{\mathrm{s} 2}, \mathrm{C}_{\mathrm{s} 3}, \mathrm{C}_{\mathrm{Bc}}, \mathrm{C}_{\mathrm{Tc}}$ and $\mathrm{C}_{\mathrm{d} 3}$ do not affect charge transfer!

But $\mathrm{C}_{\mathrm{s} 1}, \mathrm{C}_{\mathrm{T} 1}, \mathrm{C}_{\mathrm{d} 2}$ are all in parallel with C_{1} and all transfer charge

$$
\mathrm{V}_{\mathrm{OUT}}=-\frac{\mathrm{C}_{1}+\left(C_{s 1}+C_{T 1}+C_{d 2}\right)}{\mathrm{C}_{\mathrm{F}}} \mathrm{~V}_{\mathrm{IN}}
$$

Parasitic capacitances not accurately controlled and dramatically degrade matching!

Stray Insensitive SC Amplifiers

Noninverting

Another SC Amplifier with even more switches !
Increased to 14 diffusion parasitic capacitances

Stray Insensitive SC Amplifiers

Can show that all 14 diffusion parasitic capacitances do not affect gain !!

Stray Insensitive SC Amplifiers

Noninverting

Ininverting
Can show that all diffusion parasitic capacitances do not affect gain

Summing amplifier inputs either inverting or noninverting can be easily obtained

Consider the Basic Integrator

Key performance of integrator (and integrator-based filters) is determined by the integrator time constant I_{0}

Precision of time constants of a filter invariably determined by precision of I_{0}

Integrator-Based Filters:

$$
\frac{V_{\text {OUT }}}{V_{\text {IN }}}=T(s)=-\frac{1}{R_{0} C_{1}} \frac{s}{s^{2}+s\left(\frac{1}{R_{Q} C_{2}}\right)+\frac{1}{R_{1} R_{2} C_{1} C_{2}}}
$$

Second-order Bandpass Filter

Denote as a two-integrator-loop structure

Integrator-Based Filters:

Integrator-Based Filters:

Second-order Lowpass Filter

Denote as a two-integrator-loop structure

- Any filter transfer function can be implemented with integrators and summers
- Some of the best known filter structures are based upon integrators and summers
- Accuracy of RC products is critical in the design of good filters

Consider the Basic Integrator

Accurate control of I_{0} is required to build good filters !

1. Accuracy of R and C difficult to accurately control - particularly in integrated applications (often 2 or 3 orders of magnitude to variable)
2. Size of R and C unacceptably large if I_{0} is in audio frequency range (2 or 3 orders of magnitude too large)
3. Amplifier GB limits performance

Integrator Design Issues

$$
I_{0}=\frac{1}{\mathrm{RC}}
$$

Consider:

Assume $\mathrm{T}_{\text {CLK }} \ll \mathrm{T}_{\text {SIG }}$
Termed a switched-capacitor circuit

Consider the Switched-Capacitor Circuit

Assume $\mathrm{T}_{\text {CLK }} \ll \mathrm{T}_{\text {SIG }}$

Φ_{1} and Φ_{2} are complimenary nonoverlapping clocks

TLK

Consider the Switched-Capacitor Circuit

Assume $\mathrm{T}_{\text {CLK }} \ll \mathrm{T}_{\text {SIG }}$

Φ_{1} and Φ_{2} are complimenary nonoverlapping clocks

$$
V(n T)=V((n+1) T)
$$

Compare the performance of the following two circuits

Consider the charge transferred to the feedback capacitor for both circuits in an interval of length $T_{\text {CLK }}$ at arbitrary time t_{1}

For the RC circuit:

$$
\begin{array}{r}
Q_{R C}=\int_{t_{1}}^{t_{1}+T_{C L K}} i_{i n}(t) d t \\
Q_{R C}=\int_{t_{1}}^{t_{1}+T_{C L K}} \frac{V_{\text {in }}(t)}{R} d t
\end{array}
$$

Since $\mathrm{V}_{\text {in }}$ changes slowly assume input is constant over one clock period

$$
\begin{aligned}
& Q_{R C} \simeq \int_{t_{1}}^{t_{1}+T_{C L K}} \frac{V_{\text {in }}\left(t_{1}\right)}{R} d t \\
& Q_{R C} \simeq\left[\frac{V_{\text {in }}\left(t_{1}\right)}{R}\right]^{t_{1}+T_{C L K}} \int_{t_{1}} 1 d t \\
& Q_{R C} \simeq\left[\frac{V_{\text {in }}\left(t_{1}\right)}{R}\right] T_{C L K}
\end{aligned}
$$

Consider the charge transferred to the feedback capacitor for both circuits in an interval of length $\mathrm{T}_{\text {CLK }}$ at time t_{1}

For the RC circuit:

$$
Q_{R C} \simeq\left[\frac{V_{i n}\left(t_{1}\right)}{R}\right] T_{C L K}
$$

Observe that a resistor "transfers" charge proportional to $\mathrm{V}_{\text {in }}$ in a short interval of $\mathrm{T}_{\text {CLK }}$

For the SC circuit

$$
Q_{C 1}=C_{1} V_{i n}\left(t_{1}+\frac{T_{C L K}}{2}-\varepsilon\right)
$$

Since $V_{i n}(t)$ is slowly varying

$$
Q_{C 1} \simeq C_{1} V_{i n}\left(t_{1}\right)
$$

But this is the charge that will be transferred to C during phase Φ_{2}

$$
Q_{S C} \simeq C_{1} V_{\text {in }}\left(t_{1}\right)
$$

Observe that the SC circuit also transfers charge proportional to $\mathrm{V}_{\text {in }}$ in short intervals of length $\mathrm{T}_{\text {CLK }}$

Comparing the two circuits

$$
Q_{R C} \simeq\left[\frac{V_{i n}\left(t_{1}\right)}{R}\right] T_{C L K} \quad Q_{S C} \simeq C_{1} V_{\text {in }}\left(t_{1}\right)
$$

Equating charges since both proportional to $\mathrm{V}_{\text {in }}\left(\mathrm{t}_{1}\right)$

$$
\begin{aligned}
& C_{1} \simeq\left[\frac{1}{R}\right] T_{C L K} \\
& R_{E Q} \simeq \frac{1}{f_{C L K} C_{1}}
\end{aligned}
$$

Observe that a switched-capacitor behaves as a resistor!

This is an interesting observation that was made by Maxwell over 100 years ago but in and of itself was of almost no consequence

Note that large resistors require small capacitors !
This offers potential for overcoming one of the critical challenges for Implementing integrators on silicon at audio frequencies!

Equivalence Between Rapidly Switched Capacitor and Resistor

Consider again the SC integrator

$$
\begin{gathered}
\mathrm{T}_{\mathrm{SC}}(\mathrm{~s})=\frac{-1}{R_{\mathrm{EQ}} C \mathrm{~s}}=-\frac{\mathrm{I}_{0 \mathrm{eq}}}{\mathrm{~s}} \\
\mathrm{I}_{\mathrm{Oeq}}=\frac{1}{R_{\mathrm{EQ}} \mathrm{C}} \\
\mathrm{I}_{\mathrm{Oeq}}=\frac{1}{R_{\mathrm{EQ}} \mathrm{C}}=\frac{\mathrm{C}_{1} \mathrm{f} \mathrm{CLK}}{\mathrm{C}} \\
\left.\mathrm{I}_{\mathrm{Oeq}}=\left[\frac{\mathrm{C}_{1}}{\mathrm{C}}\right] \mathrm{f}\right]
\end{gathered}
$$

Consider again the SC integrator

1. Accuracy of R and C difficult to accurately control (often 2 or 3 orders of magnitude to variable)
2. Area of R and C too large in audio frequency range (2 or 3 orders of magnitude too large)
3. Amplifier GB limits performance

4. Accuracy of cap ratio and $f_{\text {cLK }}$ very good
5. Area of C1 and C not too large
6. Amplifier GB limits performance less

The Genius !!

1. Accuracy of R and C difficult to accurately control (often 2 or 3 orders of magnitude to variable)
2. Area of R and C too large in audio frequency range (2 or 3 orders of magnitude too large)
3. Amplifier GB limits performance

4. Accuracy of cap ratio and $f_{\text {CLK }}$ very good
5. Area of C1 and C not too large
6. Amplifier GB limits performance less

Observation of Maxwell (and other "Me Too" up until 1977) on equivalence of resistor and switched capacitor had no impact

Two groups independently observed items 1) and 2) in 1976/1977 timeframe and realized that practical implementations on silicon were possible and that is the genius of the concept

Switched Capacitors and the corresponding charge redistribution circuits now used well beyond the SC filter field

Incredible enthusiasm and effort followed for better part of a decade

sC integrator with summing inputs

$s C$ low-pass filter with summing inputs

Consider again the SC integrator

Observe this circuit has considerable parasitics

$$
\mathrm{C}_{1 \mathrm{EQ}}=\mathrm{C}_{1}+\mathrm{C}_{\mathrm{s} 1}+\mathrm{C}_{\mathrm{d} 2}+\mathrm{C}_{\mathrm{T} 1}
$$

Parasitic capacitors $\mathrm{C}_{\mathrm{s} 1}+\mathrm{C}_{\mathrm{d} 2}+\mathrm{C}_{\mathrm{T} 1}$ difficult to accurately match

- Parasitic capacitors of THIS SC integrator limit performance
- Other SC integrators (discussed later) ofter same benefits but are not affected by parasitic capacitors

Stray insensitive Inverting and Noninverting SC integrators

Stray Insensitive SC Low-Pass Filter with Inverting and Noninverting Inputs

Arbitrary number of inverting and ioninverting Inputs can be added

Switched-Capacitor Filter Issues

What if $\mathrm{T}_{\text {CLK }}$ is not much-much smaller than $\mathrm{T}_{\text {SIG }}$?
For $\mathrm{T}_{\text {CLK }} \ll \mathrm{T}_{\text {SIG }}$

Switched-Capacitor Filter Issues

What if $T_{\text {CLK }}$ is not much-much smaller than $T_{\text {SIG }}$?
For $\mathrm{T}_{\text {CLK }}<\mathrm{T}_{\text {SIG }}$

Switched-Capacitor Filter Issues

What if $\mathrm{T}_{\text {CLK }}$ is not much-much smaller than $\mathrm{T}_{\text {SIG }}$?
For $T_{C L K} \ll T_{\text {SIG }}$

Switched-Capacitor Filter Issues

What if $T_{\text {CLK }}$ is not much-much smaller than $T_{\text {SIG }}$?
For $\mathrm{T}_{\text {CLK }}<\mathrm{T}_{\text {SIG }}$
 φ_{1} Лใ φ_{2} Лใ

Switched-Capacitor Filter Issues

What if $\mathrm{T}_{\text {CLK }}$ is not much-much smaller than $\mathrm{T}_{\text {SIG }}$?

$$
\begin{gathered}
\text { For } T_{C L K} \ll T_{\text {SIG }} \\
\mathrm{V}(\mathrm{nT}) \stackrel{ }{ } \mathrm{V}((\mathrm{n}+1) \mathrm{T})
\end{gathered}
$$

For $T_{C L K}<T_{\text {SIG }}$

Define $\quad T=T_{\text {CLK }}$

Considerable change in $\mathrm{V}(\mathrm{t})$ in clock period

Switched-Capacitor Filter Issues

What if $T_{\text {CLK }}$ is not much-much smaller than $T_{\text {SIG }}$?

$$
V_{0}(n T+T)=V_{0}(n T)+\frac{\Delta Q}{C}
$$

but $-\Delta Q$ is the charge on C_{1} and the time φ_{1} opens

$$
\begin{gathered}
-\Delta \mathrm{Q} \simeq \mathrm{C}_{1} \mathrm{~V}_{\text {IN }}(\mathrm{nT}+\mathrm{T} / 2) \\
\therefore \mathrm{V}_{\text {OUT }}(\mathrm{nT}+\mathrm{T})=\mathrm{V}_{\text {OUT }}(\mathrm{nT})-\left(\mathrm{C}_{1} / \mathrm{C}\right) \mathrm{V}_{\text {IN }}(\mathrm{nT}+\mathrm{T} / 2)
\end{gathered}
$$

If an input $\mathrm{S} / \mathrm{H}, \mathrm{V}_{\mathbb{N}}$ constant over periods of length T thus, assume $\mathrm{V}_{\text {IN }}(\mathrm{nT}+\mathrm{T} / 2) \simeq \mathrm{V}_{\text {IN }}(\mathrm{nT})$
So obtain

$$
\mathrm{V}_{\text {OUT }}(\mathrm{nT}+\mathrm{T})=\mathrm{V}_{\text {OUT }}(\mathrm{nT})-\left(\mathrm{C}_{1} / \mathrm{C}\right) \mathrm{V}_{\text {IN }}(\mathrm{nT})
$$

Switched-Capacitor Filter Issues
 What if $T_{\text {CLK }}$ is not much-much smaller than $T_{\text {SIG }}$?

for any $\mathrm{T}_{\text {CLK }}$, characterized in time domain by difference equation
or in frequency domain characterized by transfer function obtained by taking z-transform of the difference equation

$$
H(z)=-\frac{C_{1} / C}{z-1}
$$

What is really required for building a filter that has high-performance features?

Frequency domain:
Transfer function

$$
T(s)=\frac{1}{R C s}
$$

Time domain:
Differential Equation

$$
V_{\text {OUT }}(t)=V_{\text {OUT }}\left(t_{0}\right)+\frac{1}{R C} \int_{t_{0}}^{t} V_{\text {IN }}(\tau) d \tau
$$

Accurate control of polynomial coefficients in transfer function or accurate control of coefficients in the differential equation

What is really required for building a filter that has high-performance features?

Frequency domain:
Transfer function

$$
T(s)=\frac{1}{R C s}
$$

$$
H(z)=-\frac{C_{1} / c}{z-1}
$$

Time domain:

Differential Equation

$$
V_{\text {OUT }}(t)=V_{\text {OUT }}\left(t_{0}\right)+\frac{1}{R C} \int_{t_{0}}^{t} V_{I N}(\tau) d \tau
$$

Difference Equation

$$
\mathrm{V}_{\text {OUT }}(\mathrm{nT}+\mathrm{T})=\mathrm{V}_{\text {OUT }}(\mathrm{nT})-\left(\mathrm{C}_{1} / \mathrm{C}\right) \mathrm{V}_{\text {IN }}(\mathrm{nT})
$$

Accurate control of polynomial coefficients in transfer function or accurate control of coefficients in the differential/difference equation

Switched-Capacitor Filter Issues

 What if $T_{\text {CLK }}$ is not much-much smaller than $T_{\text {SIG }}$?

$$
\mathrm{V}_{\text {OUT }}(\mathrm{nT}+\mathrm{T})=\mathrm{V}_{\text {OUT }}(\mathrm{nT})-\left(\mathrm{C}_{1} / \mathrm{C}\right) \mathrm{V}_{\text {IN }}(\mathrm{nT})
$$

$$
H(z)=-\frac{C_{1} / C}{z-1}
$$

Switched-capacitor circuits have potential for good accuracy and attractive area irrespective of how $T_{\text {CLK }}$ relates to $\mathrm{T}_{\text {SIG }}$

But good layout techniques and appropriate area need to be allocated to realize this potential !

Consider the following circuit

Termed a flip-around amplifier

Clock signals are complimentary non-overlapping

The flip-around amplifier

During Φ_{1}

The flip-around amplifier During Φ_{1}

The flip-around amplifier

$$
\text { During } \Phi_{2}
$$

The flip-around amplifier

$$
\begin{gathered}
\text { During } \Phi_{2} \\
\mathrm{Q}_{1 \mathrm{~T}}=\mathrm{C}_{1}\left(\mathrm{~V}_{\mathrm{IN}}-\mathrm{V}^{+}\right)-\mathrm{C}_{1}\left(\mathrm{~V}_{\mathrm{X}}-\mathrm{V}^{+}\right)=\mathrm{C}_{1}\left(\mathrm{~V}_{\mathrm{IN}}-\mathrm{V}^{+}\right) \\
\mathrm{Q}_{2}=\mathrm{C}_{2}\left(\mathrm{~V}_{\mathrm{IN}}-\mathrm{V}^{+}\right)
\end{gathered}
$$

The flip-around amplifier

During Φ_{2}

$$
\begin{gathered}
\mathrm{Q}_{2 \mathrm{~F}}=\mathrm{Q}_{2}+\mathrm{Q}_{1 \mathrm{~T}}=\mathrm{C}_{2}\left(\mathrm{~V}_{\mathrm{IN}}-\mathrm{V}^{+}\right)+\mathrm{C}_{1}\left(\mathrm{~V}_{\mathrm{IN}}-\mathrm{V}_{\mathrm{X}}\right)=\left(\mathrm{C}_{1}+\mathrm{C}_{2}\right) \mathrm{V}_{\mathrm{IN}}-\mathrm{C}_{2} \mathrm{~V}^{+}-\mathrm{C}_{1} \mathrm{~V}_{\mathrm{X}} \\
\mathrm{~V}_{\mathrm{C} 2 \mathrm{~F}}=\frac{\mathrm{Q}_{2 \mathrm{~F}}}{\mathrm{C}_{2}}=\left(1+\frac{\mathrm{C}_{1}}{\mathrm{C}_{2}}\right) \mathrm{V}_{\mathrm{IN}}-\mathrm{V}^{+}-\frac{\mathrm{C}_{1}}{\mathrm{C}_{2}} \mathrm{~V}_{\mathrm{X}} \\
\mathrm{~V}_{\text {OUTF }}=\mathrm{V}_{\mathrm{C} 2 \mathrm{~F}}+\mathrm{V}^{+}=\left(1+\frac{\mathrm{C}_{1}}{\mathrm{C}_{2}}\right) \mathrm{V}_{\mathrm{IN}}-\frac{\mathrm{C}_{1}}{\mathrm{C}_{2}} \mathrm{~V}_{\mathrm{X}}
\end{gathered}
$$

Comparison of Flip Around Amplifier with previous SC amplifier

$\mathrm{V}_{\text {OUTF }}=\left(1+\frac{\mathrm{C}_{1}}{\mathrm{C}_{2}}\right) \mathrm{V}_{\text {IN }}-\frac{\mathrm{C}_{1}}{\mathrm{C}_{2}} \mathrm{~V}_{\mathrm{x}}$

$$
V_{\text {OUTF }}=\frac{C_{1}}{C_{2}} V_{\text {IN }}
$$

If $\mathrm{V}_{\mathrm{x}}=0$, both have a positive gain but somewhat more gain for a given capacitor ratio for the flip-around structure

In both cases, gain accuracy dependent upon how closely the capacitor ratios can be controlled

One particularly useful application is where want dc gain equal to 2 (1bit/stage pipeline ADC)

Flip-around requires matching two capacitors, other requires ratio matching of two capacitors

Another Flip Around Amplifier

Clock signals are complimentary non-overlapping

Another Flip Around Amplifier

During phase φ_{1}

Assume C_{B} discharged at start of phase - must verify later

$$
\begin{gathered}
Q_{\mathrm{CA} 1}=\mathrm{C}_{\mathrm{A}} \mathrm{~V}_{\mathrm{IN}} \\
\mathrm{Q}_{\mathrm{CB} 1}=\mathrm{C}_{\mathrm{A}} \mathrm{~V}_{\mathrm{IN}} \\
\mathrm{~V}_{\mathrm{OUT}}=-\frac{\mathrm{Q}_{\mathrm{CB} 1}}{\mathrm{C}_{\mathrm{B}}}=-\frac{\mathrm{C}_{\mathrm{A}}}{\mathrm{C}_{\mathrm{B}}} \mathrm{~V}_{\mathrm{IN}}
\end{gathered}
$$

Another Flip Around Amplifier

During phase φ_{2}

From phase φ_{1}
$\mathrm{Q}_{\mathrm{CA} 1}=\mathrm{C}_{\mathrm{A}} \mathrm{V}_{\mathrm{IN}}$
$\mathrm{Q}_{\mathrm{CB} 1}=\mathrm{C}_{\mathrm{A}} \mathrm{V}_{\text {IN }}$

$$
\left.\begin{array}{l}
Q_{C A 2}=Q_{C A 1}+Q_{C B 1} \\
Q_{C B 2}=0 \\
V_{\text {OUT }}=-\frac{Q_{C A 2}}{C_{A}} \\
V_{C B}=0
\end{array}\right\}
$$

Verified that C_{B} was discharged at the start of phase φ_{1}
$V_{\text {OUT }}=-\frac{C_{A} V_{\text {IN }}+C_{A} V_{\text {IN }}}{C_{A}}=-2 V_{\text {IN }}$
This structure has a gain of 2 independent of any capacitor matching!

Can modify to get noninverting gain and gains of $3,4, .$. , without matching requirements

Non-overlapping Clocks

- Essential that the clocks be non-overlapping
- Simple inverter to derive the complimentary clock will not work
- Must guarantee non-overlap in the presence of PVT variations
- In non-demanding speed applications, φ_{1} and φ_{2} will have 25% duty cycles

Stay Safe and Stay Healthy !

End of Lecture 40

